

Elise Askelsen

Actions of Hopf-Ore Extensions on Path Algebras QuaSy-Con II

May 25, 2024

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

This material is based upon work supported by the National Science Foundation under Award No. DMS-2303334 and by the Erwin and Peggy Kleinfield and Dale T. Peer scholarships.

Outline

1 Background

- 2 Actions of Hopf-Ore Ext.
- 3 Applications

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

The classical notion of symmetry can be encoded using the language of group actions.

The structure of a Hopf algebra encodes a generalized notion of symmetry, including quantum symmetries.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

The classical notion of symmetry can be encoded using the language of group actions.

The structure of a Hopf algebra encodes a generalized notion of symmetry, including quantum symmetries.

Goal: Study how certain Hopf-Ore extensions act on path algebras of quivers.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

We first recall some background material about quivers.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Quivers

Definition (Quiver)

A quiver, $Q = (Q_0, Q_1, s, t)$ consists of a set of vertices, Q_0 , a set of arrows, Q_1 , a map mapping an arrow to its starting point $s : Q_1 \longrightarrow Q_0$, and a map mapping an arrow to its terminal point $t : Q_1 \longrightarrow Q_0$.

Examples:

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Definition (Path Algebra, [Sch14])

Let Q be a quiver. The **path algebra** $\Bbbk Q$ of Q is the algebra with basis the set of all paths in the quiver Q and with multiplication defined on two basis elements p, p' by

$$pp' = egin{cases} p \cdot p' & ext{if } s(p') = t(p) \ 0 & ext{otherwise.} \end{cases}$$

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

7/25

Definition (Path Algebra, [Sch14])

Let Q be a quiver. The **path algebra** $\Bbbk Q$ of Q is the algebra with basis the set of all paths in the quiver Q and with multiplication defined on two basis elements p, p' by

$$pp' = egin{cases} p \cdot p' & ext{if } s(p') = t(p) \ 0 & ext{otherwise.} \end{cases}$$

- For all $i \in Q_0$, e_i denotes the path of length 0 at i in $\mathbb{k}Q$.
- Moreover, we have the relations $e_i e_j = \delta_{i,j} e_i$ for all $i \in Q_0$ and $e_{sa}a = a = ae_{ta}$ for all $a \in Q_1$.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Background

To classify actions of Hopf algebras on path algebras, we use properties of $\Bbbk Q$.

Nice Properties of $\mathbb{k}Q$:

- $\mathbb{k}Q$ is graded, $\mathbb{k}Q = \bigoplus_{I=0}^{\infty} \mathbb{k}Q_I$.
- $\mathbb{k}Q \cong \mathcal{T}_{\mathbb{k}Q_0}(\mathbb{k}Q_1)$ = $\mathbb{k}Q_0 \oplus \mathbb{k}Q_1 \oplus (\mathbb{k}Q_1 \otimes \mathbb{k}Q_1) \oplus \dots$

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

To classify actions of Hopf algebras on path algebras, we use properties of $\Bbbk Q$.

Nice Properties of $\mathbb{k}Q$:

• $\mathbb{k}Q$ is graded, $\mathbb{k}Q = \bigoplus_{l=0}^{\infty} \mathbb{k}Q_l$.

•
$$\mathbb{k} Q \cong \mathcal{T}_{\mathbb{k} Q_0}(\mathbb{k} Q_1)$$

= $\mathbb{k} Q_0 \oplus \mathbb{k} Q_1 \oplus (\mathbb{k} Q_1 \otimes \mathbb{k} Q_1) \oplus \dots$

Hence we only need consider how these Hopf algebras act on Q_0 and Q_1 .

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Goal: Extend work of Kinser and Oswald classifying actions of $U_q(\mathfrak{b})$ on $\mathbb{k}Q$.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Goal: Extend work of Kinser and Oswald classifying actions of $U_q(\mathfrak{b})$ on $\mathbb{k}Q$.

We first considered Noetherian Hopf algebras of GK dimension 1 and 2.

Algebra	Generators	Relations	Comultiplication
$U_q(\mathfrak{b})$	$x,g^{\pm 1}$	gx = qxg	$\Delta(x) = x \otimes g + 1 \otimes x$
H(n, t, q)	$x, g^{\pm 1}$	$gx = q^m x g$	$\Delta(x) = x \otimes g^t + 1 \otimes x$
		gx = xg, $xh = qhx$,	
B(n, w, q)	$x,g^{\pm 1},h^{\pm 1}$	$x^n = 1 - g^w = 1 - h^w$	$\Delta(x)=x\otimes h+1\otimes x$
C(n,q)	$x,g^{\pm 1}$	$xg = qgx + g^n - g$	$\Delta(x) = x \otimes g^{n-1} + 1 \otimes x$

Table: Various such Hopf Algebras [Goo12]

Background

Actions of Hopf-Ore Ext.

Applications

Goal: Extend work of Kinser and Oswald classifying actions of $U_q(\mathfrak{b})$ on $\mathbb{k}Q$. We first considered Noetherian Hopf algebras of GK dimension 1 and 2.

Generators	Relations	Comultiplication
$x,g^{\pm 1}$	gx = qxg	$\Delta(x) = x \otimes g + 1 \otimes x$
$x, g^{\pm 1}$	$gx = q^m x g$	$\Delta(x) = x \otimes g^t + 1 \otimes x$
	gx = xg, $xh = qhx$,	
$x, g^{\pm 1}, h^{\pm 1}$	$x^n = 1 - g^w = 1 - h^w$	$\Delta(x)=x\otimes h+1\otimes x$
$x, g^{\pm 1}$	$xg = qgx + g^n - g$	$\Delta(x) = x \otimes g^{n-1} + 1 \otimes x$
	Generators $x, g^{\pm 1}$ $x, g^{\pm 1}$ $x, g^{\pm 1}, h^{\pm 1}$ $x, g^{\pm 1}$	GeneratorsRelations $x, g^{\pm 1}$ $gx = qxg$ $x, g^{\pm 1}$ $gx = q^m xg$ $x, g^{\pm 1}, h^{\pm 1}$ $gx = xg, xh = qhx,$ $x, g^{\pm 1}, h^{\pm 1}$ $x^n = 1 - g^w = 1 - h^w$ $x, g^{\pm 1}$ $xg = qgx + g^n - g$

Table: Various such Hopf Algebras [Goo12]

Question: Is there a type of Hopf algebra that encompasses these examples?

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Ore Extensions

Let A be a \Bbbk -algebra.

Definition

Let τ be an endomorphism of A. A τ -derivation of A is any additive map $\delta : A \longrightarrow A$ such that $\delta(ab) = \tau(a)\delta(b) + \delta(a)b$ for all $a, b \in A$ and $\delta(\Bbbk) = 0$.

The **Ore extension**, $R = A[x; \tau, \delta]$, of the k-algebra A is the k-algebra R generated by the variable x and the algebra A with the relation that for all $a \in A$

$$xa = \tau(a)x + \delta(a).$$

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Ore Extensions

Let A be a k-algebra.

Definition

Let τ be an endomorphism of A. A τ -derivation of A is any additive map $\delta : A \longrightarrow A$ such that $\delta(ab) = \tau(a)\delta(b) + \delta(a)b$ for all $a, b \in A$ and $\delta(\Bbbk) = 0$.

The **Ore extension**, $R = A[x; \tau, \delta]$, of the k-algebra A is the k-algebra R generated by the variable x and the algebra A with the relation that for all $a \in A$

$$xa = \tau(a)x + \delta(a).$$

Question: Assuming A is a Hopf algebra, when is R a Hopf algebra?

IOWA

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Definition

Let A and $R = A[x; \tau, \delta]$ be Hopf algebras over \mathbb{k} . The Hopf algebra $R = A[x; \tau, \delta]$ is a **Hopf-Ore extension** if $\Delta(x) = x \otimes h + 1 \otimes x$ for some $h \in A$ and A is a Hopf subalgebra of R.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Definition

Let A and $R = A[x; \tau, \delta]$ be Hopf algebras over k. The Hopf algebra $R = A[x; \tau, \delta]$ is a Hopf-Ore extension if $\Delta(x) = x \otimes h + 1 \otimes x$ for some $h \in A$ and A is a Hopf subalgebra of R.

By a classification of Panov in [Pan03],

• There is a character $\chi: \mathcal{A} \to \Bbbk$ such that for any $\mathbf{a} \in \mathcal{A}$

$$\tau(a) = \chi(a_1)a_2$$

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Hopf-Ore Extensions

Definition

Let A and $R = A[x; \tau, \delta]$ be Hopf algebras over k. The Hopf algebra $R = A[x; \tau, \delta]$ is a **Hopf-Ore extension** if $\Delta(x) = x \otimes h + 1 \otimes x$ for some $h \in A$ and A is a Hopf subalgebra of R.

By a classification of Panov in [Pan03],

• There is a character $\chi: A \to \Bbbk$ such that for any $a \in A$

 $au(a) = \chi(a_1)a_2$

If A is cocommutative, for α : A → k with α(uv) = α(u)ε(v) + χ(u)α(v),

 $\delta(a) := \alpha(a_1)(1-h)a_2.$

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Goal: Extend work of Kinser and Oswald classifying actions of $U_q(\mathfrak{b})$ on $\mathbb{k}Q$.

We first considered Noetherian Hopf algebras of GK dimension 1 and 2.

Algebra	Generators	Relations	Comultiplication
$U_q(\mathfrak{b})$	$x,g^{\pm 1}$	gx = qxg	$\Delta(x)=x\otimes g+1\otimes x$
H(n, t, q)	$x, g^{\pm 1}$	$gx = q^m x g$	$\Delta(x) = x \otimes g^t + 1 \otimes x$
		gx = xg, $xh = qhx$,	
B(n, w, q)	$x, g^{\pm 1}, h^{\pm 1}$	$x^n = 1 - g^w = 1 - h^w$	$\Delta(x)=x\otimes h+1\otimes x$
C(n,q)	$x,g^{\pm 1}$	$xg = qgx + g^n - g$	$\Delta(x) = x \otimes g^{n-1} + 1 \otimes x$

Table: Various such Hopf Algebras [Goo12]

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Let $A = \Bbbk G$ for some group G and consider the Hopf-Ore Extension, $R = A[x; \tau, \delta]$. For some $h \in Z(\Bbbk G)$ and for all $g \in G$,

 $\Delta(x) = x \otimes h + 1 \otimes x$ and $xg = \tau(g)x + \delta(g)$.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Hopf-Ore Extensions of Group Algebras

Let $A = \Bbbk G$ for some group G and consider the Hopf-Ore Extension, $R = A[x; \tau, \delta]$. For some $h \in Z(\Bbbk G)$ and for all $g \in G$,

 $\Delta(x) = x \otimes h + 1 \otimes x$ and $xg = \tau(g)x + \delta(g)$.

By Panov's classification in [Pan03],

• There is a character $\chi: A \to \Bbbk$ such that for any $a \in A$

 $\tau(\mathbf{g}) = \chi(\mathbf{g})\mathbf{g}$

• If A is cocommutative, for $\alpha : A \to \mathbb{k}$ with $\alpha(uv) = \alpha(u)\varepsilon(v) + \chi(u)\alpha(v)$,

$$\delta(\mathbf{g}) := \alpha(\mathbf{g})(1-h)\mathbf{g}.$$

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Hopf-Ore Extensions of Group Algebras

Let $A = \Bbbk G$ for some group G and consider the Hopf-Ore Extension, $R = A[x; \tau, \delta]$. For some $h \in Z(\Bbbk G)$ and for all $g \in G$,

 $\Delta(x) = x \otimes h + 1 \otimes x$ and $xg = \chi(g)gx + \alpha(g)(1-h)g$.

By Panov's classification in [Pan03],

• There is a character $\chi: A \to \Bbbk$ such that for any $a \in A$

 $au(g) = \chi(g)g$

If A is cocommutative, for α : A → k with α(uv) = α(u)ε(v) + χ(u)α(v),

 $\delta(g) := \alpha(g)(1-h)g.$

Proposition ([Pan03])

Every Hopf-Ore extension of $\Bbbk G$ is of the form above.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Hopf Action

Goal: Study how Hopf-Ore extensions act on path algebras of quivers.

Definition

Let H be a Hopf algebra and an algebra A.

A (left) Hopf action of H on A consists of a left H-module structure on A satisfying:

1. $h \cdot (pq) = \sum_{i} (h_{i,1} \cdot p)(h_{i,2} \cdot q)$ for all $h \in H$ and $p, q \in A$ where $\Delta(h) = \sum_{i} h_{i,1} \otimes h_{i,2}$ and 2. $h \cdot 1_A = \varepsilon(h) 1_A$ for all $h \in H$.

Example: Let $e_i, e_j \in Q_0$ and $x \in H$ such that $\Delta(x) = x \otimes h + 1 \otimes x$ for $h \in G(H)$. Then

$$x \cdot (e_i e_j) = (x \cdot e_i)(h \cdot e_j) + e_i(x \cdot e_j).$$

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Actions of Hopf Ore Extensions of Group Algebras

Let $R = \Bbbk G(\chi, h, \delta)$ be a Hopf-Ore extension of the group algebra, $\Bbbk G$, as described. Let Q be a quiver with path algebra $\Bbbk Q$ and vertex set Q_0 .

Theorem (joint work with Kinser)

- **1**. The following data determines a Hopf action of R on $\Bbbk Q_0$.
 - **1.1** A permutation action of G on the set Q_0 ;
 - **1.2** A collection of scalars $(\gamma_i \in \mathbb{k})_{i \in Q_0}$ such that

$$\gamma_{g \cdot i} = \chi(g)\gamma_i + \alpha(g)$$
 for all $i \in Q_0$ and for all $g \in G$.

The x-action is given by

$$x \cdot e_i = \gamma_i e_i - (\chi(h)\gamma_i + \alpha(h))e_{h \cdot i}$$
 for all $i \in Q_0$.

2. Every action of R on $\mathbb{k}Q_0$ is of the form above.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Actions of Hopf-Ore Extensions of Group Algebras

Theorem (joint work with Kinser)

- **1**. The following data determines a Hopf action of $R = \Bbbk G(\chi, h, \delta)$ on $\Bbbk Q$.
 - **1.1** A Hopf action of R on $\Bbbk Q_0$;
 - **1.2** A representation of G on $\mathbb{k}Q_1$ satisfying $s(g \cdot a) = g \cdot sa$ and $t(g \cdot a) = g \cdot ta$ for all $a \in Q_1$ and all $g \in G$;
 - **1.3** A k-linear endomorphism $\sigma : k Q_0 \oplus k Q_1 \longrightarrow k Q_0 \oplus k Q_1$ satisfying some technical conditions. With this data, the x-action on $a \in Q_1$ is given by

 $x \cdot a = \gamma_{ta}a - (\chi(h)\gamma_{sa} + \alpha(h))(h \cdot a) + \sigma(a).$

2. Every (filtered) action of R on $\Bbbk Q$ is of the form above.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

This work allows us to recover the action of $U_q(\mathfrak{b})$ on $\mathbb{k}Q$ as described in Proposition 3.1 and Theorem 3.13 of [KO21].

Next, we consider a specific Noetherian Hopf algebra of GK dimension 2;

Background

Actions of Hopf-Ore Ext.

Applications

Applications to Specific Hopf Algebras

Consider the Hopf algebra C(n, q).

Definition (C(n, q), [Goo89])

Given $n \in \mathbb{Z}$ and $q \in \mathbb{k}^{\times}$, let C(n,q) be the k-algebra given by generators $g^{\pm 1}$ and x subject to the relation

$$xg = q^rgx + g^n - g_1$$

The unique Hopf algebra structure on C(n, q) is given by

$$\Delta(g) = g \otimes g \text{ and } \Delta(x) = x \otimes g^{n-1} + 1 \otimes x.$$

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Applications

Applications to Specific Hopf Algebras

Consider the Hopf algebra C(n, q).

Definition (C(n, q), [Goo89])

Given $n \in \mathbb{Z}$ and $q \in \mathbb{k}^{\times}$, let C(n, q) be the k-algebra given by generators $g^{\pm 1}$ and x subject to the relation

$$xg = q^r gx + g^n - g.$$

$$\chi(g) = q^r, h = g^{n-1}, \text{ and } \alpha(g)(1 - g^{n-1})g = g^n - g \text{ so } \alpha(g) = -1$$

The unique Hopf algebra structure on C(n, q) is given by

$$\Delta(g) = g \otimes g \text{ and } \Delta(x) = x \otimes g^{n-1} + 1 \otimes x.$$

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Applications

19/25

Applications to Specific Hopf Algebras

Theorem (joint work with Kinser)

- **1.** The following data determines a Hopf action of C(n, q) on $\Bbbk Q_0$.
 - 1.1 A permutation action of $\langle g,g^{-1}\rangle$ on the set $Q_0;$
 - **1.2** A collection of scalars $(\gamma_i \in \mathbb{k})_{i \in Q_0}$ such that

$$\gamma_{g \cdot i} = q^r \gamma_i - 1 \text{ for all } i \in Q_0.$$

The x-action is given by

$$x \cdot e_i = \gamma_i e_i + (1 + q^r + q^{2r} + \dots + q^{r(n-2)}) \gamma_i e_{g^{n-1} \cdot i} \quad \text{for all } i \in Q_0.$$

2. Every action of R on $\mathbb{k}Q_0$ is of the form above.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

Applications

Theorem (joint work with Kinser)

- **1.** The following data determines a Hopf action of C(n, q) on $\mathbb{k}Q$.
 - **1.1** A Hopf action of C(n, q) on $\Bbbk Q_0$;
 - **1.2** A representation of $\langle g, g^{-1} \rangle$ on $\Bbbk Q_1$ satisfying $s(g \cdot a) = g \cdot sa$ and $t(g \cdot a) = g \cdot ta$ for all $a \in Q_1$ and all $g \in G$;
 - **1.3** A \Bbbk -linear endomorphism $\sigma : \Bbbk Q_0 \oplus \Bbbk Q_1 \longrightarrow \Bbbk Q_0 \oplus \Bbbk Q_1$ satisfying some technical conditions. With this data, the x-action on $a \in Q_1$ is given by

$$x \cdot a = \gamma_{ta}a + (1 + q^r + q^{2r} + \dots + q^{r(n-2)})\gamma_{sa}(g^{n-1} \cdot a) + \sigma(a).$$

2. Every (filtered) action of C(n, q) on $\mathbb{k}Q$ is of the form above.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

• Classify the actions of more general Hopf-Ore extensions, $R = A[x; \tau, \delta]$ where the comultiplication is of the form:

$$\Delta(x) = x \otimes a + b \otimes x + v(x \otimes x) + w$$

for $a, b \in A$ and $v, w \in A \otimes A$.

• Classify the indecomposable $\mathbb{k}Q_0$ -bimodules in rep $(\mathbb{k}G(\chi, h, \delta))$.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Thank you!

Are there any questions?

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

References I

📔 K. R Goodearl.

An introduction to noncommutative noetherian rings / k.r. goodearl, r.b. warfield, jr. 1989.

- K. R. Goodearl. Noetherian hopf algebras, 2012.
- Ryan Kinser and Amrei Oswald.
 Hopf actions of some quantum groups on path algebras.
 J. Algebra, 587:85–117, 2021.
- 🗎 A. N. Panov.

Ore extensions of hopf algebras.

MATHEMATICAL NOTES, 74(3-4):401-410, 2003.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

24/25

Ralf Schiffler.

Quiver representations.

CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2014.

Actions of Hopf-Ore Extensions on Path Algebras

Background

Actions of Hopf-Ore Ext.

Applications

Future Directions

25/25